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SUMMARY

This report describes modeling methods that allow the computation of point predictions

and prediction probability intervals for cumulative workers' compensation costs. Underlying

these models is the actuarial loss development factor method, a method that computes projected

costs by utilizing ratios of known cumulative costs in consecutive years. While the relationship

between cumulative loss development, cohort, and development year in these models is

nonlinear, a transformation renders them in the form of standard linear statistical models, thus

allowing the development of prediction probability intervals when the error structure is

Gaussian. The modeling methods are illustrated using data collected from U.S. Department of

the Navy workers' compensation payments made from 1990 through 1993, including claim costs

originating from 1961 through 1993.
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1. Introduction

The usual and preferred actuarial method for projecting workers' compensation claim

costs is based on the so-called Loss Development Model. To illustrate this method, Table 1.1

lists actual total (indemnity and medical combined) cumulative claim costs (in thousands of

dollars) from cohorts of claimants originating in years 1990 through 1993.1

The column for development year 1 is simply the total claim costs incurred for the year

in which the claims originated, namely, the cohort year. Cumulative costs are available for the

1990 cohort for years 1990, 1991, 1992, and 1993. In contrast, data are not avai!,hle, for

example, for the 1992 cohort in development years 3 and 4, since these would be accumulated in

the years 1994 and 1995 and are not yet available.

Table 1.1. Actual Total (Indemnity and Medical) Cumulative Claim Costs (In Thousands $)

Development Year

Cohort Year 1 2 3 4

1990 14,955 41,424 62,897 79,971

1991 13,566 40,314 60,137 *

1992 14,468 41,892 * *

1993 13,702 * * *

It is of interest, based on the above data, to project (or forecast, predict) the missing costs

represented by the asterisks. Actuaries approach this problem by computing Loss Development

Factors (LDF) for consecutive years. For a given cohort, these are simply the ratios of the

cumulative costs from consecutive years. Actuaries treat LDFs across cohorts as homogeneous

and average them with the intention of improving precision. Finally, they compute cumulative

LDFs by taking cumulative products of these averages. These computations are summarized for

the data in Table 1.2. Notice that by construction, the successive costs for a given cohort may be

computed by multiplying the cohort year cost (development year 1) successively by the LDFs.

For example, the 1990 cohort generates (in thousands) $14,955 the first year, ($14,955)
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(2.76991) = $41,424 accumulated through the second year, ($14,955) (2.76991) (1.51837) =

$62,897 accumulated through the third year, and so on.

Table 1.2. Loss Development Factors Computed from Table 1.1.

Development Year

Cohort Year I to. 2 2 to. 3 3 to.4

1990 2.76991 1.51837 1.27146

1991 2.97169 1.49172 -

1992 2.89549 - -

Average: 2.87903 1.50504 1.27146

Cumulative: 2.87903 4.33307 5.50932

Through experience, actuaries have found that applying the estimated (average) LDFs

calculated in this fashion to the cohorts with missing data yields accurate projections. That is, to

project the accumulated cost through development year 2 for the 1993 cohort, one simply

computes ($13,702) (2.87903) = $39,449. Similarly, the accumulated cost (using cumulative

LDFs calculated from the average LDFs) through development year 3 for the 1993 cohort is

projected to be ($13,702) (4.33307) = $59,372. Proceeding in this fashion, the missing values in

Table 1.1 are projected as shown in Table 1.3.

Table 1.3. Point Predictions of Missing Costs from Table 1.1.

Development Year

Cohort Year 1 2 3 4

1990 - - - -

1991 - - - 76,462

1992 - - 63,049 80,165

1993 - 39,449 59,372 75,489

Actuaries use numerous variations of this method. For instance, the method may be

applied separately to indemnity and medical costs to achieve greater projection accuracy. Also,
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volume-weighted averages may be used instead of simple averages of the columns of LDFs.

Finally, the costs entered in the model may or may not be adjusted for economic factors, such as

inflation, with the understanding that the resulting predictions would retain the same

interpretation with respect to these factors. That is, if the costs entered into the model are (or are

not) adjusted for inflation, then the predictions are (or are not) adjusted for inflation. Typically,

however, actuaries only present their results as point predictions, and no method for computing

measures of prediction accuracy are offered. (Indeed, searches of the literature and consultation

with practicing actuaries indicate that such methods have not been widely investigated.)

Many sources of potential error are inherent in the LDF method. Data of this nature

contain random fluctuations and other errors (e.g., systematic, specification). Also, when a large

number of cohort years are involved, comparable LDFs across cohorts can have a trend. For

example, the ratio of development year 2 cumulative cost to development year I cost for the

1961 cohort could be significantly larger than that for the 1992 cohort. Having not accounted

for this trend, its effects show up as error in the basic LDF model previously described. To

develop an assessment of prediction accuracy, the LDF method must be generalized and put into

the context of a statistical model that accounts for and makes assumptions concerning the nature

of statistical error. The natural way in which to assess prediction error is to accept the prediction

itself as a random variable having a certain probability distribution, and to provide not only a

numerical value for the prediction, but also an interval with the interpretation that the true value

of the cost will fall into that interval with a preselected probability.

Mathematically, the problem may be described as follows. A cost prediction C is a

function of available observed data C1, C2, ... Cn, say C = f(C1, .... Cn). A prediction interval

(L(c 1 ...-. C U(C 1, .... Cn)) for C with coverage probability p is a random interval with the

property that p = P{ L(C1, .... Cn) < C < U(C 1, .... Cn) }. Naturally, the larger (or smaller) the

level of p, the wider (or narrower) the prediction interval will be. For a fixed p, the width of the

prediction interval reflects the accuracy of the prediction.

The remainder of this report develops intrinsically linear statistical LDF models from

which predictions and prediction intervals may be computed. The basic models are nonlinear,
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but are termed "intrinsically linear" because they become standard linear statistical models after

a natural-log transformation. This intrinsically linear structure makes the development of

prediction probability intervals more tractable. Section 2 develops the mathematical structure of

the models, and section 3 applies the models to the computation of predictions and prediction

intervals for U.S. Department of the Navy workers' compensation costs.

Two sources of data are used in section 3. Complete data collected by the U.S.

Department of the Navy for 1990, 1991, 1992, and 1993 cohorts are used to illustrate one of the

models. Yearly incremental costs and claim counts were not available in the U.S. Department of

the Navy database for the 1961 through 1988 cohorts for development years prior to 1990 (but

are available from 1990 forward). To study the available data and to make future year

projections of total cumulative costs Miccolis 3 used actuarial methods to "reverse forecast" the

cumulative costs for the 1961 through 1989 cohorts for development years prior to 1990 by

examining trends in the incremental cost and claim count data available. These imputed data,

along with the actual data, are used by Miccolis 3 to then produce projections of future year

cumulative costs. In section 3, these imputed and actual data are used as though they were all

actual data to illustrate the use of one of the models developed herein.

The final section contains conclusions of this investigation and recommendations for

further study.

2. Intrinsically Linear Statistical Loss Development Models

Throughout this section, the basic data available will be assunied to consist of cumulative
costs (accumulated over development years) Ci,, 1 < i < N-j+1, 1 < j < N. Here, the subscript i

designates the ith cohort and the subscript j designates the development year. N is the total

number of cohorts. Usually, and this will be assumed here, the cohorts are from successive

years and arranged in increasing order by year, and assigned values 1 through N, respectively.

This facilitates analysis of a trend in LDF across cohorts. In the example in the introduction, N

= 4, and the cohorts 1990, 1991, 1992, 1993 are assigned values 1, 2, 3, and 4, respectively.

Only the upper left triangular (including the main diagonal-see Table 1.1) area of the cost

matrix elements are observed; the object is to predict the cost values in the lower right triangle
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(and beyond).

Define Y.i = log(Ci j/Ci, -1), for 1 S i < N-j+1, 2 < j < N. Notice that exp(Yij) is the

LDF relating year j cumulative costs to year j-1 cumulative costs for cohort i. It is postulated

that

Yij =f(ij) + C (2.1)

where f(ij) is an appropriate deterministic function of the cohort year index and the

development year j. For the time being, the error terms eiJ are assumed to be independent

Gaussian random variables with common zero mean and finite variance a 2 w. > 0, allowed toJ

depend on j in such a way that

X7 0 lwi<oo. (2.2)

In (2.2), it is assumed that the weights wj > 0 are known, but the parameter cr2 > 0 is unknown.

The exact form of the function f in (2.1) is unknown, but approximations are easily

derived based on plausible analysis and empirical evidence. For a fixed cohort i, the LDFs must

approach 1 as development year j increases. This is true because eventually the claims for each

claimant in the ith cohort must cease. Factors affecting this include mortality, claim settlement,

and injury recovery. Empirical evidence, such as data collected by the National Council on

Compensation Insurance,2 suggests that for fixed i, exp[f(ij)] should decrease monotonically

and smoothly to 1 as j.eo. Equivalently, f(ij) should decrease monotonically and smoothly to 0

as j--o,. To illustrate this, Figure 2.1 shows plots of LDFs versus year for accident cohorts from

1979 through 1990 as reported by the National Council on Compensation Insurance 2 from data

reported by private insurers providing workers' compensation coverage in 37 states. These LDF

plots are for indemnity, medical, and total costs. Each data point is computed from a five-year

average.
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Therefore, regardless of the exact form of f, it can be postulated that for fixed i, f has an

asymptotic expansion (as j •.,,) of the form

f(ij) - A0 + A/j + B/j2 + C/j3 + D/j +... (2.3)

(Here, the notation g(j) - h(j) as jo--o means that limj.,g(j)/h(j) = 1.) The leading two terms in

(2.3) can be eliminated as follows. Ultimately, there must be an upper bound for C.. as j

increases. That is, cohort i eventually ceases to generate further costs. The model (2.1) entails,

by iteration, that

Cij = Ci,1I L 2exp(Yik) = COlexp(Vk= 2 Yik) = exp(=l If(i,k) + k= le.k (2.4)

Because of (2.2), the random series Xk' 1 i converges (to a random variable that is finite) with

probability 1. By (2.3),

Vk f(ij)- VJ=[A0 + A/k +Bk 2 + CAk3 + D/k 4 +...]

and since A0 j-.-- and Vll/k- logo) --o, as j-.,o while jkj(lk)m <00 for m > 1, then

lim. =,f(ij) will be finite if and only if A0 = A = 0. Thus, setting A0 = A = 0 in (2.3) and

truncating the expansion after a finite number of terms should present a fairly accurate

approximation of f(ij) for fixed i. To verify this hypothesis, Figure 2.1 shows the model (2.3)
2

fit to the data from the National Council on Compensation Insurance with A0 = A = 0 and

terms beyond order 4 neglected.

From Figure 2.1 it may be concluded that qualitatively, the model (2.3) is a plausible

model for LDF data. It is noted that the National Council on Compensation Insurance data2 is

based on commercially managed payment systems that are very different from the mechanisms

present in the U.S. Department of the Navy. In particular, the rate of claim settlement is much
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higher commercially. Therefore, it would not necessarily be true that the parameters in model

(2.3) that apply to the National Council on Compensation Insurance data2 would be

approximately the samnc as those that apply to the U.S. Department of the Navy data. In fact,

with much slower claim settlement, a better empirical fit of (2.3) tc the U.S. Department of the

Navy data may be achieved by including the terms A0 and A/j, and relaxing the condition (2.2).

A nile theoretically it should be true that A0 = A = 0 and (2.2) holds, real data in which claim

settlement is slow (i.e., the approach of f(ij) to 0 as j.-o+ is apparently slow) may not be

extensive enough to effect a good fit to (2.3) with these conditions forced.

The study of the variation of f(ij) for fixed j is based mostly on empirical observation.
Evidence from both Miccolis 3 and the National Council on Compensation Insurance2 suggests

there is a slight decreasing trend in LDF as cohort year increases for fixed j. Figure 2.2 shows

LDFs from Miccolis 3 for j=2 varying from the 1961 cohort to the 1992 cohort. A quadratic

trend fit by least squares is also shown in Figure 2.2. (It is noted that the data representing the

1961 through 1989 cohorts were imputed in Miccolis, 3 as discussed in the introduction.) Of

course, as j increases, the total variability of f(ij) diminishes, so there is the need to allow

interaction (i.e., deviation from purely additive effects of the variables i and j) between the

independent variables i and j.
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Assuming f is a smooth function of i and l/j, then regardless of the true form of f, a

bivariate Taylor expansion of f should provide an approximation (in this case a sum of

monomials in the variables i and 1/j) that is reasonably accurate. Retaining terms only up to

order 4 in I/j and order 2 in i, this leads to the consideration of a parametric model for f of the

form

2 4 q V2 V4 A p ip .
f(i,j) = -0 A 0 ip + 17 A q (1/jq) + Z1ZqA pq (l/Jq)" (2.5)

In fitting the model (2.5) to actual data, it will often turn out that not all terms are needed. For

example, a stepwise regression procedure will systematically add only the terms necessary in

(2.5) to effect a good fit to the data without overfitting or underfitting. For further discussion of

over- and underfitting, see the report by Angus.4

2.1 Matrix Formulation of the Model

The LDF model developed thus far may be expressed as a stanidard linear model as

follows:

tFirst, for j > 2 and i > 1, let v(ij) denote the row vector

v(i~j) t=(lI i i 2 l/j l/j 2 1 /j 3 1/j 4 i/j i/j 2 i/j 3 i/j 4 i2 /j i2 /j2 i 2 /j3 i2 /j4)

and let J3 denote the column vector

(A00 A1 0 A20 A0 1 A0 2 A0 3 A0 4 All A12 A 13 A 14 A2 1 A2 2 A2 3 A2 4 )t

with Mt signifying the transpose of the matrix M. Also, let

Y"(Y12 Y22 YN-1,2 Y13 Y2 3 "YN-2,3 YI 1,N-I Y2,N-1 IY,N)

-12-



E = (E 12 CI 2 II ENIE1N I EIN I I r- 1,N t'

and X be the n by 15 matrix whose transpose is given by

X t=(v(1,2) v(2,2) ... v(N-1,2) I v(1,3) v(2,3) ... v(N-2,3) j.j.v(,N-1) v(2,N-1) v(1,N))"

where

n = N(N- 1)/2

is the total number of components of Y. Finally, let W be the n by n diagonal matrix

W = diag(w2 w2 ... w21w3 w3 .". w31 ...Iw 1WNI w N-1IwN)'

where the first block containing w2 is of length N-i, the second block containing w3 is of length

N-2, and so on. Then using (2.5) the model (2.1) may be written as

Yij = v(i'j)t + Ci (2.6)

or in matrix notation as

Y = XP + C. (2.7)

The error vector in (2.7) is transformed to one with homogeneous variances by premultiplying

by W"1/2 to yield

W- 1/2 y = W'1/2 x0 + C* (2.8)

where now r,* is n-variate Gaussian with zero mean and variance matrix 2I (I being the n by n
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identity matrix). Standard linear statistical model theory, such as that found in the text by

Arnold,5 now provides the result that the maximum likelihood and best linear unbiased estimator

of P is the weighted least squares estimator given by

P = (XtW'lX)'lXtW'lY (2.9)

and an unbiased estimator of a 2 is

a• =. Iyt1w-I W-Ix(xtw-Ix)- I xtw- I )y (2.10)

1 X A t W ( _ A

where p is the number of unknown parameters in P. (It is possible that not all 15 of the terms in

(2.5) will be needed. For the terms not needed, the corresponding columns of X and parameters

in P3 are removed, and the dimensions of X and P3 adjusted accordingly. , is assumed that these

adjustments have been made throughout the analysis.)

Additional facts from linear statistical model theory that will be useful in developing

prediction intervals are that

SdN(3, O'2(xtw'Ix)'I), (2.11)

A2 )d 2
(n-p)a /a- = (n-p), (2.12)

and that P and a2 are statistically independent. Here, N(g, 1) signifies a random variable that is

normally distributed with mean (scalar or vector) g and variance (scalar or matrix) F, and X2 (m)

signifies a random variable with a chi-squared distribution with m degrees of freedom. The

notation X ! Y means that the random variables X and Y have the same distribution.

2.2 Point Prediction

The first step in prediction of costs is the prediction of the missing log-LDFs. Define
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the predicted value of Y.i by

A f Yij if Yij is observed;

i v(ijj)t {3 otherwise (j > 2),

so that the predicted LDF going form year j- 1 to year j for cohort i is

A A
LDFi. = exp(Y..) (2.13b)

and the predicted cumulative LDF (CLDF) going from year 1 to year j is

A A jA

CLDFij =__= 2 LDFi = exp(k 2 Yi_) (2.13c)

(This usage of the term "cumulative LDF" is slightly different from common usage in actuarial

literature. Typically, as defined by the National Council on Compensation Insurance, 2

cumulative LDF is computed from a given base year to an "ultimate." This "ultimate"

corresponds to the limit as j-+- in this model. This approach was not adopted here, since no

"ultimate" costs were available to aid in fitting the models, and predictions out to 32 years, as

well as intermediate years, were of interest.)
A

In (2.13a), 03 is the estimator given in (2.9). Recalling that the model (2.6) or (2.7)

entails that

C. = C exp(•2Yi) (2.14)
iji,J 1, \A~d2 i~k

for 2 < j < N-i+l, and treating the initial costs C i, as constants (1 < i < N), a natural predictor

for missing Cij is given by

A I~A\
Cij= Ci exp =2 Yi,k) (2.15)
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A

with Yi,k given by (2.13a). The predictions (2.15) are nearly the same as those that would be

computed using the actuarial method described in the introduction except that the unknown (iog)

LDFs are predicted using the regression equation structure (2.6) rather than simple averaging

over (nonhomogeneous) cohorts. Thus, (2.15) should yield more accurate predictions.

To illustrate the development of the predictions in (2.15), the following assum - N =

4. Here, the upper left triangular (including the diagonal elements) numbers a, jally

observed and do not need to be predicted, but nevertheless, (2.15) reduces to the actual observed

values. The lower right part of the matrix illustrates exactly which (log) LDFs are predicted

using the estimated regression equation.

C1,1  CIjlexp(Y1 2 ) CI,lexp(Y1 2 +Y1 3 ) CI,lexp(Y 12 +Y 13 +Y 14 )

A
C2, 1 C2, 1exp(Y2 2 ) C2, 1exp(Y22+Y2 3 ) C2,1 exp(Y22+Y23+Y2 4 )

A A
C3,1 C3,1exp(Y32) C3,1exp(Y32+Y33) C3,1exp(Y32 +Y33 +Y34)

(A A A A A A

C4 ,1 C4 ,1exp(Y4 2 ) C4 ,1exp(Y4 2 +Y4 3 ) C4 ,1exp(Y 4 2+Y4 3 +Y44)

It is apparent from (2.13) through (2.15) that the predicted costs also satisfy the recursion

A A ACi~j = C ij. Ilexp(Yij) (2.16)

where j > 2, which is exactly the "loss development principle;" the predicted cumulative cost for

yearj is the predicted cumulative cost for year j-I times the estimated LDF for year j-l to j.

2.3 Interval Prediction

Suppose that in addition to predicting Cij, it is necessary to find random variables L and

U so that for a fixed, preselected probability I-ct, P(L < C ij < U} = 1-a. Here, it is assumed that

i :< N and j > N-i+l. (If j < N-i+I then Cij is observed and there is nothing to predict.) The

quantity given by
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A
1/aIc..\l/

A expY _.i+2(Yik- Y)ik)/ (2.17)

is pivotal; that is, it has a distribution that does not depend on any unknown parameters. In
(2.17) ,a is given by (2.10) and 'ik is given by (2.13a).

To see why (2.17) is pivotal, notice that Yik' k > N-i+2, are not observed in the current

data and are considered future observations. Thus, by the assumptions underlying (2.6), it
A

follows that Yik' k Ž N-i+2, are independent of Yik since the latter are functions of the current

data. Since

A ^ t A

Yik-Y ik= Yik-v(ik) 1 = v(ik) ([-P)+eik

d 2 A
where Pik = N(0, a wk) is independent of P, it follows that

Xk=N-i+2(ik- ik) = (x=N-i+2 (i) (-3) + JkN-i+2k

and hence from (2.11)

k=N.-i+2(yik-Yik) = N(0, O2) (2.18)

where

= Xk=Ni+2 k + (•=Ni+2 v(i,k)t) (xtw-X)" I +2 v(i,k)t). (2.19)\4N-+ k=N-i+2

It follows from independence and (2.12) that
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(l/T ii )1k=N-i - Yik)/a• = t(n-p), (2.20)

that is, has a t-distribution with n-p degrees of freedom. Denoting by t,(m) the u quantile of the

t-distribution with m degrees of freedom, (2.20) implies that

A

Pexp(cjCtii 2 (n-p)) < C )lf < exp("tijti..• 2 (n-p)) }1-, (2.21)

which in turn implies that

(rA, A A (A -a 2.2
PjCi exp(tia ta/2(n-p)) < C1ij < C.i exp(ij .t W2 (n-p))= (2.22)

Relation (2.22) says that with probability 1-oX, the future cost C ij will lie in the interval

ii ((2 (I:^ ), C~Ai,jep(,ij t1A/2np)

(C i~i exp aj ta/2 (n-p)) .la/(-) (2.23a)

In (2.23a), it is tacitly assumed that 0 < a < 1. Notice that the left endpoint is the point
A

prediction Ci.J multiplied by a factor less than 1 (i.e. reduced, since t (m) < 0 for -u < 1/2) and

A
the right endpoint is the point prediction Cij multiplied by a factor greater than 1 (i.e. increased,

since t1)(m) > 0 for u > 1/2).

By taking C,1 S 1 for all i, the analysis that led to expression (2.33a) also provides (1-a)

prediction intervals for cumulative LDF via

(exp(= 2*Yik + Tija t 2 (n-p)), exp Y +r tl 2(n-p) (2.23b)

Similarly, prediction limits for individual LDFs are easily developed. Letting
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r2 = w. + v(i,j)t(XtWIX)lv(ij) (2.23c)

it follows that a I1-a prediction interval for the LDF exp(Y..) is (assuming j > N-i+l)

A A A A

(eXp Yiij + r c n-p)) + rij° t-o2(n-p)) (2.23d)

2.4 Geometric Average Model

In this section it is assumed that the function f(ij) in (2.1) does not depend on i (i.e, that

LDFs are homogeneous across cohorts but may change with development year j). Thus, assume

that for all i,

f(i,j) = A). (2.24)

This would partly justify the actuarial method of prediction discussed in the introduction, but

instead of taking simple averages of like-LDFs as advocated in the actuarial method, the

following will make a case for using geometric averages instead.

Instead of parametric modeling of the variation in expected log-LDF over j as in the

previous sections, it is also possible to treat each value of pt(e) in (2.24) as a parameter to be

estimated. The disadvantage here is that predictions will not be available for Cij, for j > N, since

observed LDFs will not be available in this range. It could be argued, however, that prediction

beyond the development year range of the data is not advisable anyway.

Another difficulty with the approach of this section is that there is loss in efficiency by

introducing so many more parameters. In the previous method, no more than 15 parameters (not

including a 2 ) are estimated from the data while in the present model, there must be N-1

parameters estimated (namely gt(2), ..., gt(N)). Loosely speaking, for N > 16 and to achieve a

given level of precision, more data will be needed for the model ot this section than for the

regression model of section 2.2.
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Under this set up, the parameters o(j) are estimated by

A 1 N-j+I
B() = N-j+1Ir=1 Yrd" (2.25)

A^*

Predictions Cij of unknown costs Cij, 2 <j < N, are constructed as before using

A * Ij A^*
Cij = Ci,1 exp(f=2 Yik) (2.26)

except the predicted Y is are now computed via

A * I Yij if Yij is observed;

iij g) otherwise (2 <j < N). (2.27a)

As before, a prediction of LDF from year j-I to year j for cohort i becomes

A * ^*
LDFi. = exp(Yij) (2.27b)

and the predicted cumulative LDF (CLDF) going from year I to yearj is

A * Ik * "
CLDFij = [k= 2 LDF = exp(Vj= 2 Yik). (2.27c)

The parameter a2 is now unbiasedly estimated by

S2 2 N-I I •N-j+I A 2

The quantity
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1111 expl .(Y.. ./ (2.29)
A ik i(C ] ) k=N-i+2

is pivotal. To see this, standard Gaussian linear model theory applies allowing one to conclude

that

XkN.+2k'k (Y N(0 apO (2.30)

where

2ýk j X k (2.31)

Pij k=N-i+2 k+k=N-i+2 N-k+l"

and that

( x)(N-2)2 d 2((N-l)(N-2)/2) 
(2.32)2cr2 =

independently of (2.30), so that

SYik)/a = t(n-(N- 1)) (2.33)

where n = N(N-1)/2 as before.

At this point, it is noteworthy to compare (2.33) with (2.20). In (2.20) the degrees of

freedom are n-p with p < 15, regardless of the size of N, while in (2.33) the degrees of freedom

are n-(N-1), which eventually (as N grows) is much smaller than n-p. Thus, (2.33) will be more

variable than (2.20) and lead to wider prediction intervals than (2.20). On the other hand, for N

< 6, n-p can be less than or equal to zero and then the parametric method based on (2.5) would

not be applicable (that is, there are too many parameters and not enough data). In the present
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model, n-(N-l) = (N-I)(N-2)/2 > 0 as long as N > 2, so it would be applicable for smaller N

provided the assumption (2.24) can be made and predictions beyond j = N are not needed.

Continuing with the development of a prediction interval, (2.33) leads to

P~xPPit~(-(-))<(Cifj) 1 A* (n (N =) 1 -a, (2.34)

which in turn implies that

P{•CijexP(pij" t<C.2(n-(N-1)))< Ci'j <C. } = 1-a. (2.35)

Relation (2.35) says that with probability I-a, the future cost C ij will lie in the interval

(i*jexp(PijO tc 2 (n-(N- 1))), Ci,jexp(Pjij t l-o/2(n-(N- 1 )))) (2.36a)

In (2.36a), it is tacitly assumed that 0 < a < 1. Notice that the left endpoint is the pointA *

prediction Cij multiplied by a factor less than I (i.e. reduced, since t,(m) < 0 for u < 1/2) andl,^,

the right endpoint is the point prediction Ci j multiplied by a factor greater than 1 (i.e. increased,

since tu (m) > 0 for 1)> 1/2).

By taking Ci1 -= I for all i, the analysis that led to expression (2.36a) also provides (1-a)

prediction intervals for cumulative LDF via

xP(1=2 Y ik + Pija t 2 (n-(N-1))) , exp(V= 2 Yik + pijll-/ 2 (n-(N- 1)))). (2.36b)

Similarly, prediction limits for individual LDFs are easily developed. Letting

s.= w. + w./(N-j+l) (2.36c)
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it follows that a 1-a prediction interval for the LDF exp(Yij) is (assuming j > N-i+ 1)

(exP(ij + sj to 2 (n-(N- 1))) , exp(.Y1 + sja t 2 (n-(N- 1)))} (2.36d)

As before, the prediction formula can be expressed as

A* A **
Cij = Ci jlexp(Yij). (2.37)

When N-i+I <j < N, (2.25) and (2.27a) imply that

A, A, * 1 -j+ I 1/ N-.l
C =C il\Ill= rj) (2.38)

lj 'mu r= LJL

where

LDFrj = exp(Yrj) (2.39)

is the observed loss development factor from year j-1 to j for cohort r. Thus, this method of

prediction is nearly the same as the basic actuarial method, except that simple averaging of LDFs

has been replaced by geometric averaging of the LDFs, as seen in (2.38).
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3. Application to U.S. Department of the Navy Workers' Compensation Claims

3.1 Application to Complete 1990 Through 1993 Cohort Data

The data in Table 1.1 of the introduction represent actual complete cohort data for 1990

through 1993 cohorts having workers' compensation claims against the U.S. Department of the

Navy. This data set is small, and the LDF trend, if any, across cohorts is weak, as seen in Table

1.2. The full parametric model of sections 2.2 through 2.3 is not applicable (too many unknown

parameters in that model), but the model of section 2.4 may be applied to compute predictions

and prediction intervals. Using N = 4, w1 = ... = W6 = 1, formulae (2.28) and (2.31) yield & =

0.0299184; P2 4 = 2, P3 3 = 3/2, P3 4 = 7/2, P4 2 = 4/3, P4 3 = 17/6, and p44 = 29/6. Here,

(N-1)(N-2)/2 = 3. Taking a = .20 for an 80% prediction interval, t.90 (3) = 1.6377 = -t.10 (3), and

(2.36) yields the prediction intervals in Table 3.1.

Table 3.1. 80% Prediction Intervals for 1991 Through 1993 Cohorts Based on Data from

Table 1.1 (In Thousands of Dollars)

Development Year

Cohort Year 2 3 4

Lower Pred. U•per Lower Pred. UnDer Lower Pred. Unner

1991 71,343 76,462 81,948

1992 59,375 63,047 66,946 73,140 80,161 87,857

1993 37,263 39,432 41,727 54,646 59,344 64,446 67,749 75,454 84,036

3.2 Application to Actuarial Data From Miccolis 3

The somewhat wide prediction intervals in Table 3.1 reflect the fact that they are based

on a very small sample. When more data are available, the regression model of sections 2.1

through 2.3 can lead to more precise predictions. To illustrate their use, these models were

applied to data found in exhibit 8, sheets 3a and 3b of the report by Miccolis. 3 These data

represent (mostly imputed) total cumulative costs (indemnity plus medical) for cohorts from
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1961 through 1993, and development years 1 to 32. Because complete data were unavailable for

cohort years prior to 1990, Miccolis 3 employed a variety of actuarial techniques to estimate

claim counts and average costs per claim for the cohorts prior to 1990 using all available data.

Thus, the reader shou"A keep in mind that data employed in this example contain a great deal of

imputed values and are smoother (i.e. exhibit less fluctuation) than a completely real data set.

Consequently, the variance estimate (2.10) will be smaller than expected, leading to prediction

intervals that are narrower than could be expected from comparable real data.

For this application, there are N = 33 cohorts, and the cumulative cost data are

summarized in Table 3.2. The data employed by the models of sections 2.1 through 2.3 are the

log-LDFs, namely Yi = log(Cij /Cij- 1), 1 5 i 5 34-j, 2 < j 5 32, Ci.j being the cumulative cost

of cohort i through development year j. Cohort years 1961 through 1993 correspond to i = 1

through i = 33, respectively.
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Using stepwise regression, the model (2.6) was fit without weighting (i.e. using wk=l for

all k). Only seven terms in (2.5) were needed, and the best model therefore had p = 7 and

YVi = v(i'j)t3 + Eij (3.1)

with

v(i,j)t =(I 1/j2 1/j3 1/j 4 i4 i 2 /j2 i2 /j3 ) (3.2)

and

Pt= (A00 A0 2 A0 3 A0 4 A 14 A2 2 A2 3). (3.3)

The estimates of 03 and 02 were

0212898.6704 -22.5927 3 1.5725 -. 016130 -.00123026 .0005548)

(3.4)
A2 (.007093)2

and the fit yielded an R2 value of 99.9%.

Miccolis3 provided predictions of the costs C ij for 35-i •_ j _• 32, 3 _- i •_ 33. Converting

those and the data Cij, 1 _< i <_ 34-j, 1 __ j <_ 32, by the formula LDF.ij = Cij/Cij- I, and plotting

LDFii versus (i, j) yields Figure 3.1. Using the fitted model (3.1) through (3.4), and using the

A
methods in sections 2.2 to compute predictions Cij, the surface in Figure 3.2 was produced. It is

readily seen that not only does the model (3.1)-(3.4) provide an excellent fit to the data, but it

also produces predictions of the LDFs (outside of the original data) that are close to the

predictions produced by Miccolis 3 using different actuarial methods. It is emphasized here that
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the predicted LDFs from Miccolis 3 (lower right part of the data matrix of Table 3.2) were NOT

part of the data used to fit the regression model (3.1)-(3.4).
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Using (2.23b) and (2.36b), predictions and prediction interval endpoints were computed

for cumulative LDF (CLDF) and LDF. (Recall that an LDF is always for consecutive years in

this report, while cumulative LDF describes the loss development from the first year to the year

specified.) These are shown in Tables 3.3 and 3.4. Table 3.5 shows all the predicted costs up to

year 32 for the 1989 through 1993 cohorts, along with lower and upper endpoints for prediction

intervals. Figure 3.3 shows the cumulative cost predictions for the 1990 cohort, along with upper

and lower endpoints of a 95% prediction interval. The costs prior to year 5 are known for the

1990 cohort, so there are no prediction intervals prior to year 5.

Recall that the LDF and CLDF are known exactly up to and including years 5, 4, 3, and 2

for the cohorts of years 1989, 1990, 1991, and 1992, respectively. Thus, these are not tabled.

Also, the cumulative LDF at year 5, 4, 3, and 2 has been divided out of the formulae (2.23b) and

(2.36b) for cohorts 1989, 1990, 1991, and 1992, respectively. That is, the CLDFs in Table 3.3

start with the initial year shown as the first year in the cumulative calculation. Thus, to use the

tables to compute, for example, the predicted cost at development year 32 for the 1989 cohort,

look up the CLDF for year 32 in Table 3.3 and multiply it by the last known cumulative cost,

namely, that at year 5. This value is (in thousands) $86,373 (from Table 3.2). Thus, the

prediction is (4.2077) ($86,373) = $363,432 which is in agreement (within round-off error) with

Table 3.5. This usage of the term cumulative LDF is slightly different from common usage in

actuarial literature. See section 2.2 for a discussion of these differences.

As another example, to compute a prediction and prediction interval for the cumulative

cost for the 1993 cohort at year 32, look up the predicted CLDF from Table 3.3, Cohort Year =

1993, and Year = 32. The predicted value is 26.8176. For a 95% prediction interval (with equal

tail probabilities), find the .025 and .975 endpoints for year 32. These are 24.6378 and 29.1903,

respectively. Finally, multiply these (the endpoints and the prediction) by the initial (year 1)

cost for the 1993 cohort (from Table 3.2, $13,702 in thousands). For this example, the predicted

cost -, year 32 is then $367,455, and the 95% prediction interval is ($337,587, $399,965), all in

thousands.
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Table 3.3. Cumulative Low Deveopment Factors: Predicted and Prediction Interval Endpoints

~ ~ :4 ".~ .~?Q. ........ 0<95W0 010 490
1.1455 1.1515 1.1541 1.1571 1.1678 1.1785 1.1816 1.1843 1.1874
1.2931 1.2980 1.3022 1.3070 1.3242 1.3416 1.3466 1.3510 1.3560
1.4286 1.4352 1.4409 1.4475 1.4710 1.4948 1.5017 1.5076 1.5146
1.5561 1.5644 1.5716 1.5799 1.6096 1.639" 1.6486 1.6562 1.6650
1.6768 1.6868 1.6955 1.7056 1.7416 1.7783 1.7889 1.7981 1.8088
1.7918 1.8036 1.8138 1.8256 1.8679 1.91121 1.9236 1.9345 1.9472
1.9022 1.9157 1.9274 1.9410 1.9897 2.0395 2.0539 2.0665 2.0811
2.0088 2.0240 2.0372 2.0526 2.1077 2.1643 2.1806 2.1948 2.2115
2.1121 2.1292 2.1439 2.1611 2.2227 2.2861 2.3044 2.3204 2.3391
2.2130 2.2318 2•24,1 2.2671 2.3353 2.4056 2.4259 2.4437 2.4645
2.3118 2.3324 2.3503 2.3711 2.4461 2.5234 2.5457 2.5653 2.5882
2.4089 2.4314 2.4509 2.4736 2.5554 2.6398 2.6643 2.6857 2.7108
2.5048 2.5292 2.5503 253750 2.6637 2.7554 2.7820 2.8053 2.8326

' 2.5"99 2.6261 2.6489 2.6755 2.7712 2.8705 2.8992 2.9244 2.9540
20 2.6942 2.7224 2.7469 2.7754 2.8784 2.9853 3.0163 3.0434 3.0753

S 2.7881 2.8183 2.8445 2.8751 2.9855 3.1001 3.1334 3.1625 3.1968
N\'' 2.8819 2.9141 2.9421 2.9747 3.0926 3.2. 3.2508 3.2821 3.3187

'" 2.9757 3.0099 3.0397 3.0744 3.2001 3.3308 3.3689 3.4022 3.4414
" 3.0697 3.1060 3.1376 3.1745 3.3080 3.4472 3.4877 3.5232 3.5649

3.1640 3.2025 3.2360 3.2751 3.4167 3.5644 3.6074 3.6451 3.6895
3.2588 3.2995 3.3349 3.3762 3.5261 3.6826 3.7283 3.7683 3.8154

3.3542 3.3972 3.4346 3.4782 3.6365 3.8021 3.8504 3.8928 3.9426
3.4504 3.4956 3.5350 3.5810 3.7481 3.9229 3.9740 4.0188 4.0715
3.5474 3.5950 3.6365 3.6849 3.8609 4.0452 4.0991 4.1464 4.2020
"3.6453 3.6954 3.7339 3.7898 3.9750 4.1692 4.2259 4.2758 4.3344
3.7443 3.7968 3.8426 3.8960 4.0906 4.2948 4.3546 4.4070 4.4688
3.8445 3.8995 3.9475 4.0036 4.2077 4.4223 4.4851 4.5403 4.6054

1.1974 1.2006 1.2033 1.2065 1.2177 1.2290 1.2322 1.2350 1.2383
1.3856 1.3909 1.3954 1.4007 1.4193 A.4382 1.4436 1.4483 1.4538
1.5603 1.5676 1.5739 1.5812 1.6072 1.6336 1.6412 1.6478 1.6555
"1.7232 1.7326 1.7406 1.7500 1.7834 1.8175 1.8272 1.8358 1.8457
1.8763 1.8877 1.8975 1.9090 1.9499 1.9917 2.0037 2.0141 2.0264
2.0211 2.0345 2.0462 2.0597 2.1082 2.1578 2.1721 2.1846 2.1991
2.1590 2.1746 2.1881 2.2037 2.2599 2.3174 2.3340 2.3484 2.3654

: 2.2914 2.3091 2.3244 2.3422 2.4060 2A716 2.4905 2.5070 2.5263

S 2.4192 2.4389 2.4561 2.4760 2.5477 2.6214 2.6426 2.6612 2.6830
2.5431 2.5651 2.5841 2.6062 2.6857 2.7677 2.7914 2.8121 2.8363
2.6640 2.6882 2.7091 2.7334 2.8209 2.9113 2.9374 2.9603 2.9870
2.7825 2.8088 2.8316 2.8582 2.9539 3.0527 3.0814 3.1064 3.1358
2.8991 2.9276 2.9524 2.9812 3.0851 3.1927 3.2239 3.2511 3.2831

1 3.0141 3.0449 3.0717 3.1028 3.2151 3.3316 3.3653 3.3949 3.4296
J 3.1281 3.1612 3.1899 3.2234 3.3443 3.4698 3.5062 3.5381 3.5755

3.2413 3.2767 3.3075 3.3434 3.4731 3.6078 3.6469 3.6812 3.7214
3.3540 3.3919 3.4247 3.4631 3.6016 3.7458 3.7877 3.8244 3.8675
3A666 3.5068 3.5418 3.5826 3.7304 3.8842 3.9289 3.9681 4.0142
3.5791 3.6219 3.6591 3.7024 3.8595 4.0232 4.0708 4.1126 4.1617
3.6920 3.7372 3.7766 3.8226 3.9892 4.1630 4.2136 4.2581 4.3103
3.8052 3.8531 3.8947 3.9433 4.1197 4.3039 4.3576 4.4047 4.4602

• 3.9190 3.9696 4.0135 4.0649 4.2512 4.4461 4.5030 4.5529 4.6116
4.0336 4.0868 4.1332 4.1873 4.3839 4.5898 4.6498 4.7026 4.7647
4.1491 4.2051 4.2539 4.3109 4.5180 4.73501 4.7985 4.8541 4.9197
4.2656 4.3244 4.3757 4.4356 4.6535 4.8821 4.9490 5.0077 5.0768
4.3832 4.4450 4.4988 4.5617 4.7907 5.0312 5.1015 5.1633 5.2361
4.5021 4.5669 4.6233 4.6893 4.9297 5.1823 5.2562 5.3212 5.3978
4.6224 4.6902 4.7494 4.8185 5.3357 5.4133 5.4816 5.5620
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Table 3.3. Cumulative Loss Development Factors: Predicted and Prediction Interval Endpoints

.00. ~. ............. U

1.2829 1.2864 1.2893 1.2928 1.3049 1.3172 1.3207 1.3237 1.3273
1.5463 1.5523 1.5574 1.5634 1.5846 1.6061 1.6122 1.6176 1.6238
1.7894 1.7970 1.3044 1.8129 1.8434 1.8744 1.3833 1.8910 1.9000
2.0124 2.0236 2.0332 2.0444 2.0844 2.1252 2.1369 2.1471 2.1590
2.2210 2.2349 2.2468 2.2607 2.3104 2.3612 2.3757 2.3885 2.4034
2.4A69 2.4334 2.4477 2.4643 2.5233 2.5847 2.6022 2.6175 2.6354
2.6022 2.6214 2.6381 2.6574 2.7268 2.79801 2.8185 2.8364 2.8573
2.7788 2.8007 2.8191 2.8419 2.9212 3.0027 3.0263 3.0463 3.0709
2.9482 2.9728 2.9943 3.0191 3.1085 3.2006 3.2272 3.2504 3.2777
3.1116 3.1391 3.1629 3.1906 3.2902 3.3929 3.4226 3.4485 3.4789
3.2703 3.3005 3.3268 3.3573 3.4672 3.5807 3.6135 3.6422 3.6759'
3.4251 3.4581 3.4868 3.5202 3.6405 3.7650 3.8010 3.8325 3.8695'
3.5767 3.6127 3.6431 3.6801 3.8110 3.9466 3.9859 4.0203 4.0606
3.7260 3.7648 3.7985 3.8377 3.9793 4.1262 4.1688 4.2062 4.2500
3.87331 3.9151 3.9513 3.9935 4.1461 4.3045. 4.3505 4.3908 4.4381
4.01931 4.06-40. 4.1029 4.1481 4.3118 4.4820. 4.5315 4.5748 4.6257'
4.1643 4.2121 4.2536 4.3019 4A4770 4.6592 4.7122 4.7586 4.8132
4.3088 4.3596. 4.4038 4.4553 4.6420 4.8364 4.8930 4.9426 5.0009
4.4530 4.5070 4.5539 4.6087 4.8071 5.0141 5.0744 5.1273 5.1895
4.5972 4.6544 4.7042 4.7622 4.9728 5.1927 5.2567 5.3129 5.3790
4.7418 4.8023 4.8M49 4.9163 5.1393 5.3723 5.4402 5.49991 5.570-0

4.8870 4.9508 5.0064 5.0712 5.3068 5.5533 5.6252 5.6884 5.7627
5.0329 5.1001 5.1587 5.2271 5.4756 5.7360 5.8120 5.8787 5.9573
15.1798 5.2505 5.3122 5.3542 5.6460 5.92051 6.0007 6.07!29 6.154
5.3278 5.4022 5.4670 5.5427 5.8181 6.1072 6.1917 6.2660 6.3534
5.4772 5.5552 5.6233 5.7027 5.9921 6.2962 6.3851 6.46332 6..554

.... 9985.6281 5.73.02 5.3645 6.1682 6.877 6.5812 6.6634. 6.7602.1 5.7806 i 5.8662 5.9409 " 6.0283 6.3466 6.81 6.7801 6.86641 6.9682
5.93481 6.02441 6.10261 6,1940 " 6.5275 6.79 6.9820 7.76 7.1794

1.4845 1.4886 IA4921 1.49%2 1.5106 1.5252 1.5294 . ... 1.5330 1 .5372
1.9137 1.9213 1.9279 1.9355 1.9626 1.9901 1.9980 2.0049 2.012E9-
2.3032 2.3146 2.3244 2.3358 i 2.3765 2A4179 2.4298 2.40 2.4522'
2.6604 2.6757 2.6889 2,7043I 2.7591 2.15 2.8312 2.945 2.8616'
2.9904 3.0098 3.0265 3.0459 . 3.1152 3.1862 3.2066•at ,.3.2244 3.2453

3.2978 3.3212 3.3414 3.3649 3.4490 3.5353 3.5601 3.5818 3.6072
3.5863 3.6137 3.6375 3.6651 3.7642 3.8659 3.8953 3.9209 3.9509
3.8592 3.8907 3.9181 3.9498 4.0639 4.1813 4.2152 4.2448 4.2795
4.1192 4.1549 4.1858 4.2217 4.3510 4.4842 4.5226 4.5563 4.5957
4.3687 4.4085 4.4430 4.4831 4.6276 4.7768 4.8199 4.8576 4.9019
4.6095 4.6534 4.6916 4.7359 4.8958 5.0611 5.1090 5.1508 5.2000
4.8432 4.8914 4.9332 4.9818 5.1572 5.3389 5.3915 5.4376 5.4916
5.0713 5.1237 5.1692 5.2221 5.4133 5.6115 5.6689 5.7193 5.7783
5.2948 5.3515 5.4007 5.4580 5.6651 5.8801 5.9425 5.9972 6.0614
5.5147 5.5757 5.6287 5.6905 5.9138 6.1459 6.2133 6.2724 6.3418
5.7319 5.7973 5.8542 5.9204 6.1602 6.4097 6.4822 6.5458 6.62051 5.94711 6.0170 6.0778 6.1486 6.4051 6.6723 6.50 6.8182 6.F893
6.16101 6.2354, 6.3001 I 6.3756 1 6.6492 i 6.9345 7.0175 7.0904 7.1761
6.37401 6.4530 6.5218 6.6020 6.8930 7.1968 7.2853 7.3630! 7.4543'
6.5867 6.6704 6.7433 6.8284 i 7.1371t 7.4598 7.5539 7.6365! 7.7336
6.7994 6.8880 6.9652. 7.0552. 7.3820;. 7.7240 •. 7.8238 7.9115 8.0145
7.0127 7.1062 7.1877 7.2827 7.6281• 7.9899 8.0956 8.88 8.F9-7 5

7.2269 7.3254 7.4112 7.5114 7.8758 8.2579 8.3696 8.4676 8.5831
7.4422 7.5458 7.6362 7.7416 8.1255 8.5284 8.6462 8.7497 8.8715
7.65901 7.7679 7.8628 7.9736 8.3774 8.8016 8.9257 9.03481 9.1633'
7.8774 7.9917 8.0913 " .2077 8.6319 . 9.0780_ 9.2086 9.23 9.4587
8.0979 8.2177 8.3221 8.44421 8.8893, 9.3579 9.4951 9.61581---9.7580
8.3206 9 .4460 8.5554 8.68331 9.1498 9.6415 9.7856 9.91231 110.0617.
&.5457 8.6769 8.7913 8.92511 9A4137 9.9291 10.0807" - 10.2132 10.3700

8.7734 8.9105 9.0301 9.1701 9.6813 10.2210 10.3794 10.5187 10.6831

.35-



Table 3.3. Cumulative Loss Development Factors: Predicted and Prediction Interval Endpoints

1.0000

S2.001 2.8073 2.8155 2.8450 2.8747 2.8831 2.8905 2.8991
4.1536 4.1708 4.1857 4.2030 4.2645 4.3268 4.3447 4.3602 4.3783
5.3407 5.3679 5.3914 5.4186 5.5157 5.6145 5.6428 5.6675 5.6964

6.4157 6.4534 6.4861 6.5239 6.6592 6.7973 6.8370 6.8716 6.9120
7.4004 7.4491 7A4913 7.5402 7.7154 7.8946. 7.9461 7.9911 8*0437
8.3098 8.3697 8.A216 8.4819 8.6978 9.9193 8.9931 9.0388 9.1040
9.1563 9.2276 9.2893 9.3610 9.6184 9.8828 9.9591 10.02.57 10.1037
9.95081 10.0334 1015 018 O$4 10.7953 10.8942 10.9619 1 1.0529

10.7022 i 10.7963 10.8779 10.9727 11.31!38 11.6656 11!.7672 11.8562 11,9604

11.4182 11.5238 11.6153 11.7218 12.1052 12.5012 12.6158 12.7160 12.8335

12.1052 12.2222 12-3238 12.4420 12.8680 13.3086 13.4363 13.5479 13,6789
12.7684 12.8970 13.0387 13.1387 13.6076 14.0933 14.2341 14.3574 14.5020
13.4122 13.5525 13.6744 13.8162 14.3286 14.8599 15.0140 15.1491 15.3075

14.04041 14.1925 14.3247 14.9785 15.0347 15.6123 15.7800 15.9269 21.50
1 14.6562 14.8202 14.9628 15.1288 15.7294 16.3539 16.5353 16.6944 16.8812
15.26230 15A383 15.5914 15.7698 16.4154 17.0876 17.2831 17.4544 17.655815.8609 16.0492 16.2129 16.A038 17.0953 17.8159 18.0257 18.2096 18.4258

S16.4540 16.6549 16.8294 17.0330 17.7710 18.5411 18.7654 18.9622 F9.1935
1 17.0435 17.2569 17.4425 17.6590 13.4446 19.2651 19.5043 19.7141 19.9609
1 17.6308 17.8570T 18.0539 18.2836 19.1176 19.9896 20.2439 20.4671 20.7297

18.2173 18.45661 18.6650 19.9081 19.7915 20.7161 20.9860 21.2229 21.5017
18.8041 19.0568 19.2769 19.5337 20.4676 21.4460 21.7318 21.9828 22.2781
19.3924 19.65871 19.8907 20.1616 21.1470 22.1806 22.4827 22.7480 23.0604
19.9831 20.2633 20.5076 20.7928 21.8310 22.9210 23.2398 23.5199 23.8497

20.5771T 20.8716b 21.1282 21.4281 22.5204 23.6683 24.0042 24.2994 24.64722115 214 21,7536 122.0685 23.2161 24.4234 24.7769 25.0877 25.4538
21.7780• 22,1019 22.3945 22.7147 23.9190 25.1872 25.5588 25.8855 26.2706
22.3863 22.7256 23.0215 23.3674 24.6299 25.9606 26.3508 26.6939 27.0984

230D 335 23.6653 24,.0274 25.3495 26.7444 " 27.1536 27.5136 2798

23.62201 23.99291• 24.3166 24.6952 26.0785 27.5394 27.9682 2835 28.7905

...... 2.5 24.63781 24.9759, 25.3715, 26.8176 28.3462 28.7951 29.1903 29.6564

*These apply to the 1993 cohort only. While numbers for cohort years in the near future
will be similar, caution should be used in basing predictions for cohorts in the distant future
on these for the 1993 cohort.

"** This can be interpreted as a $1.00 cost in year 1. For example, an initial cost of $1.00
in 1993 will grow to a total accumulated cost of $26.82 by year 32.
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Table 3.4. Loss Development Factor: Predicted and Prediction Interval Endpoints

~0GlO ~~Jo - ~laO ~ . .. .. ~a0 *O0 0'5 8M0
1.1485 1.1515 1.1541 1.1571 1.1678 1.1735 1.1816 1.1943 1.1974
1.1153 1.1182 1. 1207 1.1236 1.1340 1.1444 1.1474 1. 14"9 1.1530
1.0926 1.0954 1.0979 1.1007 1.1103 1.1210 1.1239 1.1265 1.1294

9 1.0763 1.0791 1.0815 1.0843 1.0943 1.1043 1.1072 1.1096 1. 1125
:1 1.06421 1.0670 1.0694 1 *0721 1.0820 1.0919. 1.0947 1.09711 1.1000

1.05501 1.0577 1.0601 1.0628 1.0725 1.0824 1.0852 1.0876 1.0904
II 1.0477 1.0504 1.0528 1.0555 1.0652 1.0749 1.0777 1.0801 1.0829

1.0420 1.0447 1.0470 1.0497 1.0593 1.0690 1.0718 1.0742 1.0770
14 1.0373 1.0400 1.0423 1.0450 1.0546 1.0642 1.0670 1.0694 1.0722

. 1.0334 1.0361 1.0385 1.0411 1.0507 1.0603 1.0630 1.0654 1.0632
io. 1.0302 1.0329 1.0352 1.0379 1.0474 107 1.0597 1.21.04

17 1.0276 1.0302 1.0325 1.0352 1.0447 1.0542 1.0570 1.0593 1.0621
1.0253 1.0280 1.0303 1.0329 1.0424 1.0519 1.0546 1.0570 1.0598

19 1.0233 1.0260 1.0283 1.0310 1.0404 1.0499 1.0526 1.0550 1.0577
1.0216 1.0243 1.0266 1.0293 1.0387 1.0482 1.0509 1.0532 1.0560

23 1.0202 1.0223 1.0251 1.0278. 1.0372 1.0467 1.0494 1.0517 1.0545
2 1.0189 1.0216 1.0238 1.0265 1.0359 1.0454 1.0481 054.03

1.0178 1.0204 1.0227 1.0254 1.0347 1.0442 1.0469 1.0493 1.0520
24 1.0168 1.0194 1.0217 1.0244 1.37 1.0432 1.0459 1.0432 1.0510
25 1.0159 1.0185 1.0208 1.0235 1.0328 1.0423 1.0450 1.0473 1.0501
26 1.0151 1.0178 1.0200 1.0227 1.0320 1.0415 1.0442 1.0465 1.0493
If 1.0144 1.0170 1.0193 1.0220 1.0313 1.0408 1.0435 1.0458 1.0435
1* 1.0138 1.0164 1.0137 1.0213 1.0307 1.0401 1.0428 1.0451 1.0479
29 1.0132 1.0158 1.0181 1.0207 1.0301 1.0395 1.0422 1L044 1.0473

1.0127 1.05S 1.0176 1.0202 1.0296 1.0390 1.0417 1.0440 1.0467.
31 1.0122 1.0148 1.0171 1.0197 1.0291 1.0385 1.0412 1.0-435 1.04631
2 1.0118 1.0144, 1.0167 1.0193, 1.0286, 1.0381 1.0407 1.0431, 1.045!8

......... .........~ ACItY I ; ... .... .........:... . ....

5.... 1.1974 1.2006 1.2033 1.2065 1.2177 1.2290 1.2322 1.2350 1.2383
6 1.1463 1.1493 1.1519 1.1549 1.1656 1.1764 1.1794 1.1821 1.1852
7 1.1137 1.1166 1.1191 120 1.34 1.1428 1.1458 1.4 .54

1 1.0914 1.0942 1.0967 1.0995 1.1096 1.1198 1.1227 1.1253 1.1282
9 1.0754 1.0782 1.0806 1.0834 1.0933 1.1034 1.1062 1.1087 1.1116
10 1.0635 1.0662 1.0686 1.0714 1.0812 1.0911 1.0939 1.0964 1.0993
11 1.0543 1.0571 1.0595 1.0622 1.0719 1.0817 1.0845 1.0870 1.0893
12 1.0472 1.0499 1.0523 1.0550 1.0647 1.0744 1.0772 1.0796 1.0824
2 1.0415 1.0442 1.0466 1.0493 1.0589 1.0686 1.0713 1.0737 1.0765
14 1.0369 1.0396 1.0419 1.0446 1.0542 1.0638 1.0666 1.0690 1.0718
15 1.0331 1.0358 1.0391 1.0408 1.0503 1.0599 102 .61 107

1.0300 1.0326 1.0350 1.0376 1.0471 1.0567 1.0594 1.0618 1.0646
17 1.0273 1.0300 1.0323 1.0350 1.0444 1.0540 1.0567 1.0591 1.0618
22 1.0251 1.0277 1.0300 1.0327 1.0421 1.)517 1.05"4 1.0568 1.0595

1.0231 1.0258 1.0231 1.0307 1.0402 1.0497 1.0524 1.0548 1.0575
1.0215 1.0241 1.0264 1.0291 1.0385 1.0480 1.0507 1.0531 1.0558

W. 1.0200 1.0227 1.0250 1.0276 1.0370 1.0465 1.0492 1.0516 1.0543
22 1.0187 1.0214 1.0237 1.0263 1.0357 1.0452 1.0479 1.0503 1.0530
2) 1.0176 1.0203 1.0226 1.0252 1.0346 L.OW4 1.0468 1.0491 1.0519

24 1.0167 1.0193 1.0216 1.02342 1.0336 1.0421 1.045 1.0472 1.0508
25 1.0158 1.0176 1.0207 1.0234 1.0327 1.0422 1.0449 1.0472 1.049

WNW 1.0140 1.01769 1.0192 1.0226 1.0319 1.0414 1.04341 1.0464 1.0491

21 1.0137 1.0163 1.0186 1.0212 1.0306 1.0400 1.0427 1.0450 1.0473
25 1.0131 1.0157 1.0180 1.0207 1.0300 1.0394 1.0421 1.0445 107

38 1.01261 1.0152 1.0175 1.0201 1.0295 1.0389 1.0416 1.0439 1.0467
21 1.01211 1.0148 1.0170 1.0197 1.0290 1.0384 1.0411 3.0435 1.0462
22 1.01171 1.01431 1.0166 1.0192 1.02861 1.0380 1.0407M03 1.0457
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Table 3.4. Low Development Factor: Predicted and Prediction Interval Endpoints

1.2829 1.2564 1.2593 1.2928 1,3049 1.3172 1.3207 1.3237 1.3273
1.1941 1.1972 1.2000 1.2031 1.2143 12256 1.2289 1.2317 1.2349
1.1440 1.1470 1.1496 1.1527 1.1633 1.1741 1.1772 1.1798 1.1829
1.1121 1.1150 1.1175 1.1204 1.1307 1.1412 1.1441 1.1467 1.1497

1 1.09021 1.0930 1.0955 1.0983 1.1084 1.1136 1.1215 1.1240 1.1270
1c . 1.07441 1.0772 1.0796 1.0824 1.0924 1.10241 1.1053' 1. 1077 1. 1 06

S9 1.06271 1.0655 1.0679 1.0706 1.0804 1.0903 1.0932 1.0956 1.0985
1 1.05371 1.0565 1.0588 1.0616 1.0713 1.0811 1.0839 1.0863 1.0892
1 1.0467 1.0494 1.0518 1.0545 1.0641 1.0739 1.0767 1.0791 1.0819

1 .0411 1.0438 1.0461 1.0488 1.0584 1.0681 1.0709 1.0733 1.0761
1.0365 1.0392 1.0416 1.0442 1.0538 1.0634 1.0662 1.0686 1.0714
1.0328 1.0355 1.0378 1.0405 1.0500 1.0596 1.0623 1.0647 1.0675
1.0297 1.0323 1.0347 1.0373 1.0468 1.0564 1.0591 1.0615 1.0643
1.0270 1.0297 1.0320 1.0347 1.0442 1.0537 1.0564 1.0588 1.0616
1,0248 1.0275 1.0298 1.0325 1.0419 1.0514 1.0542 1.0565 1.0593

1.02294 1.0246 1.0279 1.4395 1.0400 1.0495 1.0522 1.0546 1.0573
1.0273 1.0239 1.0262 1.0289 1.0383 1.0478 5 1.0505 1.0529 1.0556
1.01980 1.0225 1.0248 1.0274 1.0368 1.0463 1.0490 1.0514 1.0541
1.10416 1.0212 1.0235 1.0262 1.0356 1.0451 1.0478 1.0501 1.0529
1.0175 1.0201 1.0124 1.0251 1.0345 1.0439 1.0466 1.0490 1.0517

. 1.0165 1.0192 1.0215 1.0241 1.0335 1.0429 1.0456 1.0480 1.0507
1.0157 1.0283 1.0206 1.0232 1.0326 1.0421 1.0447 1.0471 1.0496
1.0149 1.0475 1.0198 1.0225 1.0318 1.0413 1.0440 1.0463 1.0490
1.0142 1.0168 1.0191 i0218 1.0 1.0706 1. 1.0432 1.0456 1.0483

xx2 1.01361 .49 101 .39 103 .73 106 .15 10

. 1.0136 1.0162 1.0155 1.0411 1.0305 1.0399 1.0426 1.0449 1.0477
1.0136 1.0157 1.0179 1.0206 1.0299 1.0393 1.0420 1.0444 1.0471
1.01251 1.0151 1.01741 1.0201 1.0294 1.0388 1.0415 1.0434 1.04661

'1 1.012014 7100 1.0170 1.0196 1.025 1.0383 1.0518 1.0412 F.64

i1106 .25 .38 104 1.0239 1.53 .05620 1.0584 1.04613

1.0116 1.0143 1.01651 1.0192 1.0451 1.0379 1.0546 1.0429 1.0459

1 1.0227 1.0254 1.0921 .0303 1.1039 1.1193 1.0202 1.053 1.09571
1.0241 1.0376 1.02602 1.0287 1.0314 1.5024 1.5053 1.5057 1.5037
1.0197 1.027 1.0246 1.0287 1.0679 1.0865 1.0319 1.0181 1.0940

1.0184 1.0219 1.0129 1.0609 1.0354 1.2044 1.0427 1.0289 1.0252

3 1.04173 1.0247 1.0223 1.1024 1.0343 1.1738 1.17465 1.1788 1.1056

4 1.04 1.0190 1.0213 1.0194 1.0333 1.0139 1.015 1.04785 1.0581

1.0155 1.0918 1.0945 1.0231 1.0251 1.0479 1.2046 1.0728 1.0497
S1.014 1.0174 1.0719 1.0234 1.0314 t.0140 1.0433 1.0672 1.0896
1.0241 1.0167! 1.090 1.0616 1.0396 1.0404 1.0923 1.0945 1.0978

.. 1.05 1.01 1.0134 1.0210 1.0046 1.0386 1.0458 1.0412 1.0760
S1.01 1.0156 1.0518 1.0230 1.0698 1.0739 1.0761 1.0385 1.0613

1 1.0246 1.0133 1.0573 1.0420 1.0293 1.0876 1.0041 1.0738 1.0656
Q 1.0320 1.0846 1.0216 1.0139 1.0284 1.0633 1.0650 1.0843 1.0710

1.0211 1.0237 1.0260 1.0287 1.0381 1.0476 1.0503 1.0527 1.0554
1.0197 1.0223 1.0246 1.0273 1.0367 1.0462 1.0489 1.0512 1.0540
1.0184 1.0211 1.0234i 1.0260 1.0354 1.0449 1.0476 1.0499 1.0527
1.0173 1.0200 1.0223, 1.0249 1.0343 1.0438 1.0465 !.0488 1.0516
1.0164 1 .!0190 1.0213 1.0240 1.0333 1.0428 1.0455 1.0478 1.0506
1.0155. 1.0182 1.0205 1.0231 1.0325 1.0419 L.044 1.0470 !.097

1.0148• 1.0174 1.0197 1.0223 1.0317 1.04 11 1.0438 1.0462 1.0499
1.0141• 1.0167 !.0190 1.0216 1.0310 1.0404 1.0431. 1.0455 1.0482

1.0129• 1.0156 1.0178 1,0205. 1.0298. 1.0392 1.0419 1.0443 1 .07
1.-.012,4 1.01!51 1.0173 1.02001 1.02931 1.0387 1 .04 14 1.04 38 1.0465

1.0120 1.0146 1.0169 1,0951• 1.02881 1.0383 1.04 10 1.0433 1.0460
1.0115 1.0142 1.0165 1.01911 1.02841- 1.0378 1.0405 1.0429 1.0456
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Tabl.- 3.4. Loss Development Factor: Predicted and Prediction Interval Endpoints

2.98 2.01 2.80'73 2.8155 2.5450 2.8747 2.8831 2.8905 289

3 1.4728 1.A769 1.4904 1.4845 1.4990 1.5135 1 5177 1.5213 1.5255
4 1.2714 1.2748 1.2778 1.2912 .23 1357.39 322 1.3158

5 1.1871 1.1902 LI19M 1.1961 1.2073 1.2187 1.2219 1.2247 1.2280.
6........ 1.1393 1.1423 1.1449 1.1479 1.1586 1.1694 1.1724 1.1751 1.1782

1.1087 1.1116 1.1141 1.1170 1.1273 1.1378 1.1407 1.1433 1.1463
S1 1.0876 1.0904 1.0929 1.0957 1.1058 1.1160 1.1189 1.1214 1.1244

1.0724 1.0752 1.0776 1.0*04j 1.0904 1.1004 1.1032 1.1057 1.1086
10 1.0611 1.0638 1.0662 1.0690 1.0788 1.0887 1.0915 1.0940 1.0968

1.0524 1.0551 1.0575 1.0602 1.0700 1.0798 1.0826 1.0850 1.0878
1.0456 1.0483 1.0506 1.0334 1.0630 1.0728 1.0755 1.0779 LOWS0

£3 1.0401 1.0428 t.0452 1.0479 1.0575 1.0672 !.0699 1.0723 1.0751
1.0357 1.0384 1.47 l03s 1.0530 1.0626 .051078 1.0705

$1 1.031 1.0348 1.0316 1.0194 1.0288 1.0382 1.0609 1.06432 1.0659

3± 1.0219 1.0235 1.0258 1.0285 1.0237 1.0378 1.0501 1.0525 1.04552

1.0244 1.39. .48.01



Table 3.S. Cumulative Costs: Predicted and Prediction Interval Endpoints (In Thousands ot ?p)

. .....3.

37,324
55,962

4 72,550
........ ........... ...... .......... 8 6 ,3 7 3

~~~~.... W..00 ~ .0( 950 09 0,9900
99,196 99.456 99.681 99,941 100864 101.794 102.060 102.291 102.560

7 111.691 112.109 112,470 112,888 114,374 1180 116,311 116.686 117,123
't 123,394 123,963 124.454 125.023 127,052 129.113 129,704 1130.218 1130.818

av w" 134.404 135,122 135,742 136.462 139,029 141.645 14.9 4.4 4.1
10 144,829 145.696 146.446 147,315 150,423 153,597 15.0 5.D 5.3

154,767 155.783 156.663 1763 6136 165.074 2 a ,2 71 i4
12 164,300 165.467 166,478 1760 171,853 176,161 j j. 8 4 17 S3

1) 173.502 174.821 175.963 177.289 182,048 186,934 1988343 I 189,5741 191.0151
4 182,432 183.903 185,179 186,660 191,982 197,456 199,036 200,416 202.033

.1 191.141 192,767 194.178 195,817 201.709 207.779 209.533 211.066 212.862
...... 316 199.673 201,456 203.003 204.802 211,274 217.951 219,882 221.570 223.550

17 28,6 1008 211.693 213,654 220,716 228.011 230.123 231,970 24.3

`4 216,349 218.454 220,281 222.406 230.068 237.994 240.290 242.299 244.656
*9 224.554 226.823 228.793 231.086 239.360 247.930 250.414 252.589 255.142
.0 232.703 235.140 237.256 239,720 248.617 257.845 260.523 262.867 265.620
21 240,818 243.425 245,691 248.329 257,863 267,764 270.639 273.157 276.115

...... 248.918 251.699 254,116 256,932 267.118 277.707 280.784 283,481 286.649
23 257.018 259.977 262.550 265.548 276.399 287.694 290.979 293,858 297,241
24 265.135 268.276 271.007 274,191 285.723 297.741 30.9 3436 3090
25 273.282 26,608 279.502 282.875 295.106 30.6 3158 3184 3863

.. 28.71 24,87 28.. 291.615 304,560 3184080 322.020 325.477 329,543
27 289,713 293.423 296.652 300.420 314,098 328,399 332,570 336.230 340,536

......... 298.018 301,927 305,331 309,303~ 323,732 338,834 343.242 347.112 351.665
2. 06.397 310.510 314.092 318.273 3,43 4999 354.050 3835 362,942

31 314,857 319.179 322,944 327,340 343,331 360,103 365.004 369.310 374,379
....... 323.408 327,943 331,896 336.512 353.315 370,957 376,116 380.649 35987

32 332.057 336.812 1 340.956 345.798 1 363.435 381.971 38-7,395 3262 397,778

i~~.y~5 9......

3 14.955
2~41.424
3 62.897
4 79.971

0.0100 0.050 0.0500 .1000 P~eICWd: 7~~90 .50 0.70 090
S 95,758 96.011 96.230 96.482 97.379 98.284 98.542 98.766 99.028

6 10.11 11.23 11,93 112.012 113.503 115.05 15447 115,823 116.261
. ........1. 124.778 125,361 125.865 126.449 128.528 130.642 131.248 131.775 132.391

... S.. 137,807 138.554 139.200 139.948 142.621 14,5 16.2 1680 1764
....... 150,045 150.957 151.746 152.661 155,933 159.275 160,235 161,072 162.051

10 161.626 162.704 163.637 164.719 168.595 M72563 173,704 174,701 175.866
.... 1 2 72,660 173.906 174.984 176,235 180.722 185.323 186,649 187,806 189,161

12 183.246 184,659 185.884 187,306 192.410 197.653 199.165 200.485 20.3
13 193.461 195.045 196A417 198.011 203,739 209.633 211.334 212,821 214.563
#4 2336 205.130 206.652 2840 214.780 221.334 223.228 224,884 226.824

15 213,046 214,974 216,646 218.591 225,592 232.816 234.906 236,734 238.876
16 222.520 224.624 226.449 228.57 3 236.224 244.131 246.420 248,423 250.772
17 231.840 234,122 236,103 238.408 246.720 255,322. 257,814 259,996 262.555
11 241.041 243.504 245.643 248.133 257,118 266,428 2928 271,492 27,6

#9 250.155 252.802 255.102 257.779 267.450 277.483 280.395 282.945 285,939
20 259.209 262,043 26.4.506 267.374 277.744 288.5 16 291,645 294,386 297.605

21....... 268.225 271.250 273.880 276,943 288.027 299.554 302.905 305,841 309.291

22 2725 280.445 283.245 286,507 298,320 3060 314.198 317,335 321.020

2$ 286.228 289.646 292.619 296.086 308.644 321,735 325.546 328.888 332.816

24 295,249 298.871 302,021 305,695 319,017 332.919 336.968 340,521 344.698
.. 2..... 304.304 308.133 311.466 315.352 329.455 344.188 348.483 352.252 356.684

26 313.407 317.448 320.966 325.071 339,973 355,559 360.106 364,097 368,791
27 322.570 326.828 330,536 . 334,864 350.586 367.047 371,853 376,071 381,036
2* 331,805 336.285 340.187 344.743 361.307 378.666 383,737 388,190 393A432
29 341.121 345.829 349,931 354.720 372,146 390,429 395,773 400,467 405.994

30 350.529 355.47 359.776 364.806 383.117 402.347 407,972 412.914 4 18.734
31 360.038 365.218 369.733 1 375,009 394,229 414.433 420.347 425.544 431.667
32 369.656 375.081 379,812 1 385.340 405.492 426.698 432.909 438,368 444,802
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Table 3.5. Cumulative Costs: Predicted and Prediction Interval Endpoints (In Thousands of$S)

1 13.566
3 40.314
3 60,137

S477,151 7735,7536 77,742 73,473 79.211 79,421 79,604 79,817
S 92.990 93,349 93,659 94,017 95.292 96.595 96.954 97.276 97.651I
6 107.551 108.065 108,509 109.023 110.856 112.720 113,254 113,719 114.263
7 121,018 121.690 1222,271 122,945 125,350 127.802 128,506 129.119 129.836
* 133,566 134.398 135,118 135,953 138.940 141.992 142.870 143.635 144.530

9 14.345 246 39 147,200 148,198 5.74 155.436 156,490_ 15,0 8.7

* 156.489 5746 158,647 159,320 163,981 168.260 169,494 170.571 171.831
.... 1. 1 167.107 168.427 169,571 170.900 175.671 180,575 181.990 183.226 184.674

A12 1793 1878 180.065 181.561 186.938 192.474 194.073 195.470 2910

......... 187.124 188,775 190,207 191.871 197.860 204,036 205.822 207.383 209.213
1..... .9.6 9.8 200.062 201.897 208.505 215.330 217,305 21.3 2208

13 205.973 207,962 209.687 211.694 218,930 226.413 228.580 230.477 232,701
16 215.094 217.254 219.129 221.311 229.183 237,335 239.698 241.766 244.194

1l 224,068 226.402 228.428 230.787 239,306 248.138 250.701 252.945 255.579
1* 232.930 235,439 237.620 240,159 249.334 258.861 261,627 264,050 266.895
19 241,708 244.397 246.734 249,456 259,301 269.535 272.508 275,114 273.175
20 250.429 253.300 255,796 258,705 269.233 280.188 283.374 286.167 289.448
21 259,116 262.173 264.831 267,930 279,154 290.847 294,251 297.234 300.741
23 267.7988 7. 27 27.5 277.151 289.086 301.535 305.160 308.340 312,078

NO 3 276.463 279,903 282.896 286,387 M 299.048 312.270 316.123 319.504 323.479
24 285,158 288,795 291,961 295.654 309,059 323,072 327,159 330,745 334,964
25 293.887 297,725 301,068 304,968 319,134 333.958 338.284 342.082 346,550
26 302,62 306,707 310,230 314.341 329,287 - 344.943 349.515 353.529 358.254
23 311,496 315,752 319.459 323,788 339,532 356.042 360,866 365.103 370.091
2* 320,399 324.871 328.768 333,319 349.881 367.267 372,351 376,817 382.076
29 329,383 334.075 338.166 342.944 360.347 378.632 383,982 388.683 3914.221
30 338.455 343.374 347.663 352.675 370,939 390,148 395,772 400.716 406.540
3l 347,625 352.777 357.270 362.521 381.668 401.827 407,732 412.925T 419,044
32 356,902 362.292 366.993 372,489 1 392.544 1 413,678 419.874 425.323 1 431.745J

1 14.468
2 41.982

omoo 0.050 ~ 0.0(K 950 0750 OL9900
3 62,189 62.360 62.507 62.678 63.282 63.893 64.067 64.219 64.395
4 0.168 80.487 80.763 81.082 82.219 83,371 83,700 83,987 84.322

.... 96,485 96.962 97319.5 9,5 0,9 02,788 102.221 102.727
6 111.448 11200 12.645 11328 1585 27,930 12.03 29.290 119,876

7 125,275 126,084 126.784 127,597 130.503 133.476 134,331 135.077 135.950
4 138.151 139.130 139.977 140.961 144.486 148.100 149.141 150.049 251,1122
9 150,237 151.387 152,383 153,539 157,689 261,951 163,180 164,254 165.511

1 6 16.669 162.990 164,136 165.466 170.246 175,163 176.583 177.824 179.277
13 72.562 174,056 1531 7686 8270 8750 189,462 190.872 192,524

12 183.013 184.679 186.125 187.807 193,859 200.108 20.1 046 205,349
3 293.0 194.941 196.539 198.398 205095 212.019 224,024 2178 27.3

14 202.892 204,909 206.660 208.698 216.047 223,655 225.860 227.790 230.055
16 21.46 214.640 216,546 218,764 1 226,773 235.074 237.48 23.9 24.6

£6 221.809 224.183 226.245 228,646 237.323 2639 248.944 25 3 253.922
.....11 231,022 233 578 2579 3886 247.741 257,463 260,287 262,762 265.669

.1 240.121 242.861 245.243 248.019 258.063 268.514 271.552 274.216 277,345
91 249.136 252,064 254.609 257,576 268,322 279.516 282.773 285.629 288,985
20 2804 61.212 6.2 267.086 278,546 290.498 293.978 297.031 300,629

21 267.018 20329 273.211 2652 288,761 301.487 305,195 308.449 312.274
275.927 279.437 282A492 286.055 298.988 312.506 316.447 319.907 323.975

23 284.842 288.553 291.784 295,554 309.247 323.575 327,756 331.426 335.744
24 293.777 297.694 301.105 305,087 319.557 334.714 339,140 343.026 347.600
2 ~ 302.748 306,875 320.470 324,668 329,934 345,941 350.618 354.726 359.561

26 311.767 316.1 10 319.893 324.312 340.392 357,270 362.205 366.540 371.645
±7 3088 325.420 329.387 334.031 350.946 368,717 373.917 3846 383.867

28 330.001 334.788 338.962 343.838 361,.608 380.296 385,767 39,7 396,242
20 339.237 344.255 343.630 353.744 372.390 392.020 397,770 402.826 408.784W
30 348.565 353.819 358.401 363,758 383.304 403.900 4 1997 45.246 421.505

II 357,995 363.490 368,285 373,892 394.3604W.4 2.8 427.850 434.4 18
...... 367.535 373.278 37.9 38.5 40.6 42.7 43.2 4060 4755
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Table 3.5. Cumulative Costs: Predicted and Prediction Interval Endpoints (In Thousands of$S)

* 13,702
.~ lO 0..2.. O.40 -i100 Csdie 090O*50 075

2 38,253 38.366 38.465 38,578 38.981 39.388 39.504 39,605 39,723
q 56.912 57,148 57.353 57,589 58.431 59.286 59.530 59.743 59,991

4 73.178 73,350 73.872 74.245 75.575 76.929 77.318 77,656 78,051
87,907 88.425 88.872 89,391 91.244 9317 9.8 94.154 9.0

101.400 102.068 102,646 103.316 105.716 108,171 108.877 109.494 110.215
7 13.60 11.681 115.392 116.218 1.7 2.1 123.085 123.849 124.742
* 125.460 126,436 127,282 128.264 1.70 135.413 136,459 137,371 139.440
9 136,345 137,477 1849 3959 143.698 147,916 149,135 150.199 151.447
10 146,641 147.930 149.048 150.347 155.021 159.841 161.234 162,452 163.880

'l 156.452 157,898 159,153 160.612 165,865 171.291 172.861 174.234 175.945
2 165,865 167.469 168.861 170.480 176,317 182.354 184,103 185.633 187.428
13 174,952 176.714 178,245 180.025 186.451 193,106 195,036 196.725 198.706
14 183,773 185.696 187,366 189,310 196.329 203.610 205,722 207.572 209.743

15.. 192... U 381 194.465 196.276 198.385 206.005 213.919 216.217 218,230 220.5941

6 200.819 203.066 205.019 207.294 215524 224.080 226.567 228.746 231.305
17 209.123 21 1.535 213.633 216,077 224,924 234,133 236.812 239.160 241.919

1* 217,325 219,905 222,149 224.764 234.239 244.113 246.987 249,507 252.469

... 22..453.228.203 230,595 233.385 243.49 254.050 257.123 259.89 262.988
20 233,530 236,453 238,997 241,964 252.727 263.970 267,247 270.122 273.503
21 24 1.577 244,676 247.374 250.522 2199 7387 277.382 280,440 28.3

2.2...... 249.613 252.892 255.747 259.079 271,182 283.851 287.549 290.796 294.615

23 257,654 261.116 264.131 267,651 280.446 293.853 297.769 301.207 305,254
24 265,714 269.363 272.542 276,254 289,756 303,918 308.058 311,693 3 15.973
25 273.808 277.648 280.994 284.902 299,128 3M4064 318,432 322.269 326,789
26 281.947 285.982 289.499 293.608 308.574 324.303 328.905 332.950 337,715

.. 7 .. 90.141 294.376 298.068 302.382 318.107 334.649 3943 343.751 348,768

.......1 298.401 302.840 306,711 311.236 327.738 345.115 350,206 354,683 359.959

...... 9.... 306.737 31 1.385 315.440 320,180 337,479 355.712 361,058 365.759 371.301

3 ~315,157 320.019 324.262 329.223 347,339 366.452 372,058 376.991 382.807
31 323,669 328.750 333,185 338.373 357.328 377.344 383.219 388,389 394.487

32 332.280 3757 3229 4,60 367.455 388.399 394.550 399.965 406.352
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4. Conclusions and Recommendations

This investigation shows that the Loss Development Method commonly used by actuaries

to predict workers' compensation costs can be cast in the context of intrinsically linear models

and thereby made amenable to the theory of linear statistical models for the computation of point

and interval predictions of future costs. These computations have been illustrated using actual

and imputed U.S. Department of the Navy workers' compensation claims. In addition, the

log-loss development regression model developed herein has been shown to produce point

predictions that are nearly the same as those produced (with apparently much more effort) using

traditional actuarial methods (Figures 3.1 and 3.2). In contrast to the actuarial approach, the

regression approach is relatively easy to compute, with the computations involved being

standard in many statistical computer packages, and it provides a means of assessing the

accuracy of the resultant predictions. Moreover, beyond knowledge of basic linear statistical

models and statistical analysis, specialized knowledge is not needed to apply them.

I emphasize here that the reader should not conclude that an inexperienced analyst armed

with the linear model methods employed herein can somehow replace the traditional analyses

and/or services of a professional actuary. Rather, the methods of this investigation should be

evaluated further by actuarial scientists and practitioners and perhaps be adopted (with any

necessary and suitable modifications) as another set of tools in the collection of numerical

methods that have come into actuarial practice.

Mathematically and statistically speaking, a few paths for future research should be

pursued. First, recall that the linear model formulated in section 2 assumes that the error

variances are not all equal. In fact, they are assumed to approach zero as development year

increases. This is a reasonable assumption and one that should be retained. However, the

examples used to illustrate the methods all assumed homogeneity of variances. This approach

was taken in section 3.1 because the data set was so small and in section 3.2 because the data

(which contained a great deal of imputed data) was already very smooth and the errors very

small. In practice, an effort should be made to assess the weights in (2.2) perhaps considering

expansions of w. that would lead to w. = 0 (1/jv) as j-*.o for some v > 1.
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A crucial assumption that allows the development of closed-form expressions for the

prediction interval endpoints is that of a Gaussian error distribution. Some investigation should

be undertaken using more extensive data to test the Gaussian assumption. This was not pursued

in this investigation because the example of section 3.1 had too few data points and the data

from section 3.2 had too much imputed data.

In parallel with testing the Gaussian assumption, alternative methods (not based on the

Gaussian assumption) of computing prediction intervals should be investigated. In particular,

the models of section 2 are all amenable to bootstrapping, a computational method that allows

the estimation of the relevant statistical quantities with only minimal assumptions. I am

currently pursuing this in a separate investigation that will make use only of the actual U.S.

Department of the Navy data (as opposed to the imputed data in the study by Miccolis 3 ).

Finally, I recommend that models having different regression structures (perhaps

nonlinear, and not intrinsically linear), as well as some classes of dynamic statistical models (for

example Yt = g(Yt-1 ' Ct ) t = 1, 2, ... ) be investigated. The actuarial literature is currently

focused on ad hoc (although effective and useful) curve graduation and point projection methods

and is relatively short of models with sufficient structure to allow probabilistic assessment of

prediction accuracy. This report provides a stimulus in these directions.
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